Continuous Energy Minimization for Multi Target Tracking Pami
Abstract
Most (3D) multi-object tracking methods rely on appearance-based cues for data association. By contrast, we investigate how far we can get by only encoding geometric relationships between objects in 3D space as cues for data-driven data association. We encode 3D detections as nodes in a graph, where spatial and temporal pairwise relations among objects are encoded via localized polar coordinates on graph edges. This representation makes our geometric relations invariant to global transformations and smooth trajectory changes, especially under non-holonomic motion. This allows our graph neural network to learn to effectively encode temporal and spatial interactions and fully leverage contextual and motion cues to obtain final scene interpretation by posing data association as edge classification. We establish a new state-of-the-art on nuScenes dataset and, more importantly, show that our method, PolarMOT, generalizes remarkably well across different locations (Boston, Singapore, Karlsruhe) and datasets (nuScenes and KITTI).
Keywords
- 3D multi-object tracking
- Graph neural networks
- Lidar scene understanding
References
-
Aygün, M., et al.: 4D panoptic lidar segmentation. In: CVPR (2021)
-
Bergmann, P., Meinhardt, T., Leal-Taixé, L.: Tracking without bells and whistles. In: ICCV (2019)
-
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. JIVP 2008, 1–10 (2008)
-
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP (2016)
-
Braso, G., Leal-Taixé, L.: Learning a neural solver for multiple object tracking. In: CVPR (2020)
-
Brendel, W., Amer, M.R., Todorovic, S.: Multi object tracking as maximum weight independent set. In: CVPR (2011)
-
Butt, A.A., Collins, R.T.: Multi-target tracking by Lagrangian relaxation to min-cost network flow. In: CVPR, June 2013
-
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)
-
Chiu, H.K., Prioletti, A., Li, J., Bohg, J.: Probabilistic 3D multi-object tracking for autonomous driving. In: ICRA (2021)
-
Choi, W.: Near-online multi-target tracking with aggregated local flow descriptor. In: ICCV (2015)
-
Dellaert, F., Thorpe, C.: Robust car tracking using Kalman filtering and Bayesian templates. In: Conference on Intelligent Transportation Systems (1997)
-
Frossard, D., Urtasun, R.: End-to-end learning of multi-sensor 3D tracking by detection. ICRA (2018)
-
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)
-
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)
-
Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: IJCNN (2005)
-
Held, D., Levinson, J., Thrun, S., Savarese, S.: Combining 3D shape, color, and motion for robust anytime tracking. In: RSS (2014)
-
Kim, A., Ošep, A., Leal-Taixé, L.: EagerMOT: 3D multi-object tracking via sensor fusion. In: ICRA (2021)
-
Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Video panoptic segmentation. In: CVPR (2020)
-
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
-
Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment problem. Naval Res. Logist. Q., 83–97 (1955)
-
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)
-
Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: Siamese CNN for robust target association. In: CVPR Workshops (2016)
-
Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: CVPR (2014)
-
Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. IJCV 77(1–3), 259–289 (2008)
-
Leibe, B., Schindler, K., Cornelis, N., Gool, L.V.: Coupled object detection and tracking from static cameras and moving vehicles. PAMI 30(10), 1683–1698 (2008)
-
Li, J., Gao, X., Jiang, T.: Graph networks for multiple object tracking. In: WACV (2020)
-
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)
-
Liu, L., et al.: On the variance of the adaptive learning rate and beyond. In: ICLR, April 2020
-
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)
-
Luiten, J., Fischer, T., Leibe, B.: Track to reconstruct and reconstruct to track. RAL 5(2), 1803–1810 (2020)
-
Luiten, J., et al.: HOTA: a higher order metric for evaluating multi-object tracking. IJCV 129, 548–578 (2020)
-
Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. PAMI 36(1), 58–72 (2014)
-
Moosmann, F., Stiller, C.: Joint self-localization and tracking of generic objects in 3D range data. In: ICRA (2013)
-
Mykheievskyi, D., Borysenko, D., Porokhonskyy, V.: Learning local feature descriptors for multiple object tracking. In: ACCV (2020)
-
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
-
Nguyen, U., Heipke, C.: 3d pedestrian tracking using local structure constraints. ISPRS J. Photogrammetry Remote Sens. 166, 347–358 (2020)
-
Ošep, A., Mehner, W., Mathias, M., Leibe, B.: Combined image- and world-space tracking in traffic scenes. In: ICRA (2017)
-
Ošep, A., Mehner, W., Voigtlaender, P., Leibe, B.: Track, then decide: category-agnostic vision-based multi-object tracking. In: ICRA (2018)
-
Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for autonomous urban driving. AR 26, 123–139 (2009)
-
Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)
-
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: CVPR (2017)
-
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)
-
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)
-
Reich, A., Wuensche, H.J.: Monocular 3D multi-object tracking with an EKF approach for long-term stable tracks. In: FUSION (2021)
-
Schulter, S., Vernaza, P., Choi, W., Chandraker, M.K.: Deep network flow for multi-object tracking. In: CVPR (2017)
-
Sharma, S., Ansari, J.A., Krishna Murthy, J., Madhava Krishna, K.: Beyond pixels: leveraging geometry and shape cues for online multi-object tracking. In: ICRA (2018)
-
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)
-
Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3d object detection in a point cloud. In: CVPR (2020)
-
Son, J., Baek, M., Cho, M., Han, B.: Multi-object tracking with quadruplet convolutional neural networks. In: CVPR (2017)
-
Tang, S., Andres, B., Andriluka, M., Schiele, B.: Subgraph decomposition for multi-target tracking. In: CVPR (2015)
-
Teichman, A., Levinson, J., Thrun, S.: Towards 3D object recognition via classification of arbitrary object tracks. In: ICRA (2011)
-
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV (2019)
-
Tokmakov, P., Li, J., Burgard, W., Gaidon, A.: Learning to track with object permanence. In: ICCV (2021)
-
Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: CVPR (2019)
-
Weng, X., Wang, J., Held, D., Kitani, K.: 3D multi-object tracking: a baseline and new evaluation metrics. In: IROS (2020)
-
Weng, X., Wang, Y., Man, Y., Kitani, K.: GNN3DMOT: graph neural network for 3D multi-object tracking with multi-feature learning. In: CVPR (2020)
-
Wu, H., Han, W., Wen, C., Li, X., Wang, C.: 3D multi-object tracking in point clouds based on prediction confidence-guided data association. IEEE TITS 23, 5668–5677 (2021)
-
Wu, H., Li, Q., Wen, C., Li, X., Fan, X., Wang, C.: Tracklet proposal network for multi-object tracking on point clouds. In: IJCAI (2021)
-
Xu, Y., Ošep, A., Ban, Y., Horaud, R., Leal-Taixé, L., Alameda-Pineda, X.: How to train your deep multi-object tracker. In: CVPR (2020)
-
Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)
-
Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3D object detection and tracking. In: CVPR (2021)
-
Zaech, J.N., Liniger, A., Dai, D., Danelljan, M., Van Gool, L.: Learnable online graph representations for 3D multi-object tracking. IEEE R-AL , 5103–5110 (2022)
-
Zeng, Y., Ma, C., Zhu, M., Fan, Z., Yang, X.: Cross-modal 3D object detection and tracking for auto-driving. In: IROS (2021)
-
Zhang, L., Yuan, L., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)
-
Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28
-
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)
Acknowledgement
This research was partially funded by the Humboldt Foundation through the Sofja Kovalevskaja Award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, A., Brasó, G., Ošep, A., Leal-Taixé, L. (2022). PolarMOT: How Far Can Geometric Relations Take us in 3D Multi-object Tracking?. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_3
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/978-3-031-20047-2_3
-
Published:
-
Publisher Name: Springer, Cham
-
Print ISBN: 978-3-031-20046-5
-
Online ISBN: 978-3-031-20047-2
-
eBook Packages: Computer Science Computer Science (R0)
Source: https://link.springer.com/chapter/10.1007/978-3-031-20047-2_3
0 Response to "Continuous Energy Minimization for Multi Target Tracking Pami"
Post a Comment